
AD-AL02 18 GNERAL RESEARCH CORP SANTA BARBARA CA F/6 9/2
FAVS ENAMCEMENTS. (U)
RAY 81 R A MELTON F30602-79-C-01

UNCLASSIFIED RADC-TR-81-94 NL

mE /E/'IlllE
EllEllllllEllIEEEIIIIIEEIII
EIIEEIIEEEEEEE
llU lfllll* lflflfll1



IRAC-TR4 -94 V
Final Technical Report
May 1981

FAVS ENHANCEMENTS
General Research Corporation

R.A. Meton

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNUMITED

DTIC
eELECTE! .

IUL 3 O 1981

ROME AIR DEVELOPMENT CENTER U
Air Force Systems Command D

S Griffiss Air Force Base, New York 13441

1 7

81 7 30 002



This report has been reviewed by the JLADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-94 has been reviewed and is approved for publication.

APPROVED:

FRANK1 S. LMONICA
Project Engineer

APPROVED: j r7 O %
ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THE CAMWADER:

JOHN P. HUSS
Acting Chief, Plans Office

If your addresi has changed or if you wish to be removed from the RADC
mailing list, or if the Addresses is no longer employed by your organization,
please notify RADC. (ISlE) Griffis* AFB NY 13441. This will assist us in
maintaining a current aJling list.

Do not return this copy. Retain or destroy.

wh.w&



UNCLA S 1IF1:D
1ECURIT ~.SSIFICAT:ON OF THIS PAGE (When D*I. EnIered),

READ INSTRUCTIONS
REOTDOCUMENTATION PAGE BEFORE COMPLETING FORM

1~2 GOVT ACCESSIO o 3. CIPIENT'S CATALOG NUMBER.

P,%D C T R- 81 - 94 0_______.2______1_
4: rL E(n S.beCITe) - . ia

___ Fi a 7"echnical Pepdkt

~VSIS . PERFORMING 0 1G. WPORT NUMBER

7. AU THOR(a) 8. CONTRACT'" GRANT ITUMGER(B)

R.A. Melton -- F3)Y6A0-79-C-, l56'

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKC
AREA & WORK UNIT NUMBERS

General Research Corporation 671
PO Box 6770 , 3530". /
'Santa Barbara CA 93111 _________

II. CONTROLLING OFFICE NAME AND ADDRESS / ReP**RI'T

Rome Air Development Center (ISIE) .MayJ*8l

Griffiss AFB NY 13441 I 13. NUMBER OF PAGES

IA. MOmITORING AGENCY NAME & ADDRESS(iI diff erenti fm COntrolling4 Office) IS. SECURITY CLASS. (of this report)

Sam UNCLASSIFIED

ISo. DECLASSIFICATION/OOWNGRADING
____ ___ ____ ___ ___ ____ ___ ___ ____ ___ N/ SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entored us Block 20. if different from, Report)

19. SUPPLEMENTARY NOTES

RADC Project Engineer: Frank S. LaMonica (ISIE)

I9. KEY WORDS (Continue on reverse side if necessary and Identify by block nisiber)

Computer Software Testing
Computer Software Verification
Software DevelopMer.L Tjol

AF1ORTRAN

0. ABSTRACT (Comtlnues onr. everse aide if necessary and identify by block number)

This report documents the results of an effort to upgrade the FORTRAN
Automated Verification System (FAVS) installations at the Defense Mapping
Agency (DMA) Aerospace Center (DMAAC) and Hydrographic/Topographic Center
(DMAIITC). The upgrade, which was accomplished by a series of four software
releases, included efficiency enhancements, user interface improvements,
and the capability to process the ASCII FORTRAN programm~ing language.

DD JA 1473 EDITION O0INV 5I OSLT UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wh~en 0Df. EntereE)

0- . .Z4



CONTENTS

SECTION PAGE

ACKNOWLEDGEMENTS iv

1 INfRODUCTION 1-1

2 EFFICIENCY ENHANCEMENTS 2-1

2.1 Token Processing 2-4
2.2 Cross-Reference Processing 2-5
2.3 Symbol Table Processing 2-6

2.4 Source Text Analysis 2-6
2.5 Data Base System Tuning 2-7

3 RESTART FILE ENHANCEMENTS 3-1

4 UNIVAC ASCII FORTRAN ENHANCEMENTS 4-1

5 USER INTERFACE ENHANCEMENTS 5-1

5.1 Commands 5-1
5.2 Modified Reports 5-4

6 FAVS ERROR CORRECTION 6-1

6.1 FORTRAN V Procs 6-1
6.2 FORTRAN V Compiler Statement 6-1
6.3 FORTRAN V Internal Subroutines 6-1
6.4 "EOF" Variable 6-2
6.5 Assign -GO-TO Statements 6-2
6.6 Long Data Statements 6-2

APPENDIX

A Updates to the DMATRAN User's Guide A-i

Accession For

NTIS GRA&I X
DTIC TAB
Unarulovaiced [j
Justificotion- --

By-
Distribution/.. .. .

Availability Codes

Avail and/or
Dist Special



FIGURES

NO. PAGE

2.1 Relative Improvement in FAVS I/0 Processing Time 2-2

2.2 Relative Improvement in FAVS CPU Processing Time 2-2

3.1 Relative Improvement in FAVS Restart Processing 3-3

3.2 Relative Improvement in Restart File Size 3-4

5.1 FAVS.O Statement Listing 5-6

5.2 FAVS.4 Statement Listing 5-7

5.3 FAVS.0 Library Dependence Matrix 59

5.4 FAVS.4 Invocation Summary 5-10

5.5 FAVS.0 Common Matrix 5-12

5.6 FAVS.4 Common Summary 5-13

5.7 FAVS.0 Matrix (Enhanced) 5-15

5.8 FAVS.4 Common Matrices 5-16

5.9 FAVS.0 Static Analysis Report 5-18

5.10 FAVS.4 Static Analysis Report (with LIST option) 5-19

5.11 FAVS.4 Symbols Report 5-20

5.12 FAVS.4 Static.Analysis Report (without LIST option) 5-21

5-13 FAVS.0 Cross Reference Report 5-23

5.14 FAVS.4 Cross Reference (Individual Module) 5-24

5.15 FAVS.4 Cross Reference (Common Variables) 5-25

5.16 FAVS.4 Cross Reference (Externals) 5-26

5.17 Restructure Report 5-28

5.18 FAVS.4 Picture of Module Structure 5-30

5.19 FAVS.4 Interface Changes Report 5-31

ii



TABLES

NO. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ PAGE

11 FAVS Updates 1-2

21 Characteristics of Source Programs and CDC 6400 2-3
I Processing Times (in seconds)



ACKNOWLEDGEMENTS

Many individuals contributed to the design and implementation of
FAVS. E. F. Miller, Jr., originated the work at General Research

Corporation which resulted in the methodology for FAVS. He, together

with Michael Paige, Jeoff Benson, Randy Urban, Rich Melton, Carolyn

Gannon, Dick Wisehart, and others, initially built RXVP, an automated

verification system for FORTRAN, a product of the Program Validation

Project sponsored by General Research Corporation.

JAVS (JOVIAL Automated Verification System) was the immediate

successor to RXVP. In its development, the RXVP software testing

methods were examined, the algorithms were extended to JOVIAL con-

structs, and the JAVS software itself was written in the JOVIAL lan-

guage. JAVS was installed at RADC, and user training was conducted.

The major contributors to the JAVS project were Jeoff Benson, Nancy
Brooks, Carolyn Gannon, E. F. Miller, Jr., Ray Stone, Randy Urban, and

Dick Wisehart, all employees (at that time) of General Research Corpor-

ation. The RADC Project Engineer for JAVS was Dick Robinson.

STRUCTRAN-I and STRUCTRAN-2 were developed concurrently with the

JAVS project. STRUCTRAN-I translates DMATRAN (a structured extension of

FORTRAN) to FORTRAN, and STRUCTRAN-2 translates FORTRAN to DMATRAN. The

STRUCTRAN software was installed at DMAAC in St. Louis, Missouri. The

major contributors to STRUCTRAN were Dorothy Andrews, Rich Melton, and

Randy Urban. The RADC Project Engineer for STRUCTRAN was Don Mark.

The development of FAVS integrated concepts from RXVP with

STRUCTRAN-2, incorporated certain capabilities of JAVS, extended the

STRUCTRAN-2 capabilities, and improved STRUCTRAN-1. The FAVS software

is written in DMATRAN. FAVS has been installed at DMAAC, DMAHTC, and

RADC, and user training and maintenance training have been conducted.

iv



The major contributors to FAVS were Dorothy Andrews, Carolyn Gannon,

Rich Melton, and Randy Urban. The RADC Project Engineer was Frank

LaMonica.

The FAVS enhancements described in this report reduced the

computer resources required during FAVS processing by a factor of three

or more, improved the FAVS user interface and reports, and added

processing of the UNIVAC ASCII FORTRAN dialect. The enhanced FAVS has

been installed at DMAAC and DMAHTC. The major contributors to FAVS

enhancements were Dorothy Andrews and Rich Melton. The RADC Project

Engineer was Frank LaMonica.

.4v



EVALUATI ON

The purpose of this contractual effort was to upgrade the FORTRAN

Automated Verification System (FAVS) installations at the Defnese Mapping

Agency (DMA) Aerospace Center (DMAAC) and Hydrographic/Topographic Center

(DMAHTC). The goals of the effort were to provide efficiency enhancements

to reduce FAVS processing time by at least a factor of three, improve the

FAVS user interface, extend FAVS processing to UNIVAC ASCII FORTRAN, reduce

FAVS data base library storage requirements, and to correct residual errors.
The upgrade, which was accomplished by a series of four software releases,

was successfully performed and, in some cases, the goals were exceeded. The

effort resulted in a software testing tool which is closely tuned to the DMA

processing environment. This effort was responsive to the objective of the

RADC Technology Plan, TPO 4G3, "Software Engineering (Software Tools)."

FRANK S. LAMONICA
Project Engineer

vi 46JA



1 INTRODUCTION

The FORTRAN Automated Verification System (FAVS) is a series of

tools which provide:

* Translation from DMATRAN (a structured extension of FORTRAN)

to FORTRAN and from FORTRAN to DMATRAN

0 Static detection of unreachable statements, set/use errors,

mode-conversion errors, and external reference errors

A means of measuring the effectiveness of software test

cases, both individually and cumulatively

* Assistance in the construction of test data that will

thoroughly exercise the software

0 Automated documentation

As part of its program for applying advanced technology to improve

the quality and reliability of software, and to provide testing tools

for the Defense Mapping Agency, Rome Air Development Center contracted

with General Research Corporation to design, install, and document

certain enhancements of FAVS. The enhancements are intended to reduce

the cost of assuring that software systems written in FORTRAN are

comprehensively tested. This report (the final report for the project)

describes the enhancements and quantifies the improvement in performance

where possible.

The work involved the application of efficient and automatable

algorithms and techniques to the verification and testing of FORTRAN

software. The specific tasks were to provide efficiency enhancements

that reduce FAVS processing time by at least a factor of three, improve

the FAVS user interface and reports, extend FAVS processing to UNIVAC

ASCII FORTRAN, provide an interface library capability for FAVS, and

correct errors in FAVS.

Ut
1-1



The FAVS software was enhanced in a series of four updates (Table

1.1). Each update was installed and tested at DMAAC and DMAHTC by GRC

personnel, after verifying correct operation by testing on the CDC 6400

at GRC in Santa Barbara, California. It was originally planned that all

efficiency enhancements would be completed during Update 1. At that

time the CDC 6400 version of FAVS had met the goal of running in one-

third of the original processing time, mostly because of reductions in

CPU time. When Update I was installed on the UNIVAC 110 0 /80s at the DMA

sites,however, the relative improvement was not as great. The slower

I/O devices in the UNIVACs caused FAVS to be more I/0 bound. Subsequent

updates, therefore, included further enhancements to improve the I/O

performance of FAVS. The result was significant further improvement in

performance on the CDC 6400 as well as the UNIVAC 1100/80.

TABLE 1.1

FAVS UPDATES

FAVS Week of Update Type of
Update DMAAC DMAHTC Update

1 7-23-79 7-16-79 Efficiency enhancements,

error corrections

2 10-15-79 11-11-79 Efficiency enhancements,

report enhancements, error
corrections

3 1-21-80 1-28-80 ASCII FORTRAN, error
corrections, efficiency

enhancements

4 5-18-80 4-21-80 Interface library, user
interface enhancements,

error corrections

The enhanced FAVS has been implemented for the analysis of

computer software written in UNIVAC FORTRAN V, ASCII FORTRAN, or DMATRAN

and is operational on the UNIVAC 1100/80 computers at DMAHTC in

1-2



Washington, DC, and DMAAC in St. Louis, Missouri, and on the CDC 6400

computer at General Research Corporation in Santa Barbara, California,

where it was developed.

Section 2 of this report summarizes the efficiency enhancements.

Section 3 describes restart file enhancements. Section 4 describes

extensions for the UNIVAC ASCII FORTRAN dialect. Section 5 describes

the enhanced FAVS user interface and improved FAVS reports. Section 6

describes error and deficiency corrections to FAVS.

In addition to this report, a number of other reports have been

prepared as part of the effort:

* FAVS (FORTRAN Automated Verification System) User's Manual

(CR-1-754/1, December 1977, revised April 1980).

This report is an introduction to using FAVS in the testing

process. Its purpose is to acquaint the user with the

application of FAVS to program testing, so that an efficient

approach to program verification can be taken. The basic

commands by which FAVS provides this assistance are dis-

cussed in detail. FAVS processing is described in the order

normally followed by the beginning FAVS user. The Appen-

dixes include a description of FAVS operation at DMAHTC and

DMAAC, with both sample command sets and sample job control

statements.

eDMATRAN User's Guide (CR-1-673/I, January 1978)

This report describes the structured constructs and syntax

of DMATRAN, a structured extension to FORTRAN. It also

details the use of the DMATRAN preprocessor, which trans-

lates DMATRAN into FORTRAN. Procedures for using the UNIVAC

1100/80 or the Honeywell 6180 version of DMATRAN are

included. Revision pages to update the DMATRAN User's Guide

are included as Appendix A of this Final Report.

1-3r4_



* FAVS (FORTRAN Automated Verification System) Computer

Program Documentation: Vols. 1, 2, 3 (CR-2-754/1, January

4 1978; Revised January 19b1).

These reports describe the FAVS software design, the

organization and contents of the FAVS data base, and for

each FAVS component its function, each of its invokable

modules, and the global data structures it uses. The report

is intended for use in FAVS software maintenance, together

with the Software Analysis reports described below.

* FAVS Computer Program Documentation: Vol. 4, Software

Analysis

This volume is a collection of computer output produced by

FAVS, not reproduced but on file at RADC, DMAAC, and DMAHTC.

The source code for each component of the FAVS software has

been analyzed by FAVS itself to produce ehhanced source code

listings of FAVS with indentation and control structure

identification, inter-module dependence, all module invo-

cations, module control structure, and a cross reference of

symbol usage. This volume is intended to be used with Vols.

1-3 for FAVS software maintenance. It is itself also an

excellent example of the use of FAVS for computer software

docamentation.

1-4



2 EFFICIENCY ENHANCEMENTS

Experience at DMA indicated that FAVS required excessive computer

time when analyzing large FORTRAN systems. The time (especially for I/O

processing) seemed to increase exponentially as more lines of source

code were analyzed. The DMA data processing department was running

large backlogs--FAVS users were faced with overnight (or even weekly)

turnaround--and DMA management could foresee even larger backlogs if the

use of FAVS became widespread. To remedy this situation, a goal was set

of enhancing FAVS efficiency to reduce its processing time (CPU and I/O

combined) by a factor of three. This goal was met and exceeded. FAVS

processing time (especially I/O processing time) is now nearly linear in

source lines analyzed. In processing 3500 to 7000 lines of source code,

processing time has been reduced by a factor of 8 to 10.

Figures 2.1 and 2.2 indicate performance increases in the range

of 150 to 7000 source lines. In these figures FAVS.0 refers to FAVS

before any efficiency enhancements, FAVS.4 refers to FAVS after the

enhancements described in this section. Table 2.1 shows characteristics

of the source programs used, as well as the actual processing seconds

used (on the CDC 6400/GOLETA system). All source programs used were

written in DMATRAN, so that compilation time refers to the sum of

DMATRAN precompilation and CDC SCOPE FTN compilation time. All FAVS

times are for the STATIC option. Similar results were obtained on the

DMA UNIVAC 1100/80.

I/O Processing Time

As indicated in Fig. 2.1, FAVS I/O processing time was improved by

a factor of 3 to 7 when processing 150 source lines, but was improved

dramatically (10 to 30 times) when processing 3500 to 7500 source lines.

Previously, FAVS.O I/O processing time increased exponentially with the

number of symbols processed. FAVS.4 I/O processing is nearly a constant

2-1



25

j 20

FAVS.O
FA VS .4

15

1/0

10 11

00

0 K 2K 3K 4K 5K 6K - 7K 8K

SOURCE LINES

Figure 2.1. Relative Improvement in FAVS 1/0 Processing Time

CPU 2

CI 1K 2K 3K 4K 5K 6K 7K 8KSOURCE LINES
Figure 2.2. Relative Improvement in FAVS CPU Processing Time

2-2



A>

*1 z

00 -4 -- n

-n 000

>0 -T 00 I

04 0

-4

C04

e-4

0n

0

z -4

fA4

0 z

z3

2-3



multiple of source lines processed. FAVS.4 performs extremely well in

terms of I/0 time as more and more symbols are processed, primarily

because of the enhancements in token processing and cross-reference

processing. FAVS.O exhibited a high I/O-processing overhead when

processing small numbers of source lines and symbols and large numbers

of modules. In FAVS.4, this problem was eliminated by enhancements to

the virtual data space processing.

CPU Processing Time

As indicated in Fig. 2.2, FAVS CPU processing time was improved

by a factor of two to three when processing 150 source lines and by a

factor of as much as four when processing 7500 source lines. FAVS CPU

processing time appears to be a constant multiple of source lines

processed. This combined with recent improvements in the DMA computers

translates into an order of magnitude reduction in CPU processing time

in the DMA data processing environment. At the same time as the FAVS

Enhancement contract, DMA undertook a series of hardware enhancements

which reduce CPU processing time by a factor of 3 to 4. FAVS users at

DMA can now expect significantly improved turnaround, and DMA managers

are not faced with the prospect of significantly increasing backlogs as

FAVS becomes more widely used.

2.1 TOKEN PROCESSING

Meaningful strings of source text characters (keywords, labels,

symbols, constants, etc.)--which may be longer than one computer

word--are internally represented by FAVS as "token integers". The way

in which tokens were processed contributed to the nonlinear behavior of

FAVS when processing source elements containing many symbols. Token

integers were implemented as pointers to character strings stored in a
"token table". When FAVS encountered a character string, it performed

a sequential search of all entries in the token table to see if the

string had been previously encountered; if not, it added the string as

the last entry of the token table.

2-4



FAVS token processing was modified to recognize short character

strings which fit in one machine word (6 characters or less on the

UNIVAC 1100/80) and treat the string (interpreted as an integer) as its

own token integer, in the following way. FAVS character strings are

left-justified and blank-filled. Short character strings are now

converted into token integers by filling them with a special encoding

character (thus storing the character string as well as its length into

one machine word). There is no need to check the table at all for short

strings, Long character strings, and character strings ending in the

special encoding character (used for filling short character strings),

are treated in the same manner as before. Since most FORTRAN tokens are

short (operators, delimiters, and symbols), this change significantly

reduces the size of the token table as well as the number of times it is

searched. Encoding short character strings into token integers and

decoding token integers into character strings is an efficient process

which is independent of the number of tokens previously processed.

2.2 CROSS-REFERENCE PROCESSING

Several of the FAVS options require a data structure which

identifies the occurrence and use of all symbols in a set of source

elements. This was previously implemented as a Referenced Symbol table

which contained an entry for each symbol, and a Cross Reference table

which contained an entry for each use of each symbol. The Referenced

Symbol entry started a chain of entries in the Cross Reference data

structure for all occurrences of that symbol. The global scope of the

Referenced Symbol table contributed to the nonlinear behavior of FAVS

when processing source elements containing many symbols. Previously for

each use of a symbol in any source element, a linear search of the

Referenced Symbol table was performed to see if a chain of uses for the

symbol already existed. If it did, this use was added to the chain;

otherwise a new chain was begun.

2-5



FAVS was modified to include in each module's symbol table a

pointer to the use chain of each symbol used in the module. This

improves the efficiency of FAVS cross-reference processing by completely

eliminating the need to search the Referenced Symbol table. Because it

also directly relates cross-reference information to symbol information,

better cross-reference and static analysis reports can be produced.

2.3 SYMBOL TABLE PROCESSING

Each symbol, label, or constant which occurs in a source element

was previously described by a 19-word entry in the element's symbol

table. The size of this data structure contributed significantly to the

size of a FAVS restart file, as well as to the processing overhead. The

symbol table was modified to utilize 7-word entries plus expandable

variable-length entries. These modifications reduce the size of FAVS

restart files and decrease FAVS processing time.

2.4 SOURCE TEXT ANALYSIS

FAVS previously performed three passes through the original source

text before converting it to an internal form. This required reading

the source three times and writing it twice, with minor alterations each

time it was written. FAVS was modified to perform the same function

while reading the original source only once.

FAVS previously translated source text to an internal form,

reconstructed the source text from that internal form, and then stored

the reconstructed text for use in printing and punching. FAVS was

modified to store source text exactly as it is read in and to tie its

internal statement representations to the original source text. This

eliminates a time-consuming character processing task (source text

reconstruction) as well as improving the usability of FAVS reports.

2-6



2.5 DATA BASE SYSTEM TUNING

The above enhancements concentrated on the problem of analyzing

FORTRAN source code more efficiently. FAVS uses a general purpose data

base storage and retrieval system. After the above enhancements were

completed, it was determined that the data base system accounted for 95%

of FAVS I/O time. By tuning the data base system, FAVS I/O was reduced
Aby a factor of four (in addition to the reductions described earlier).

The data base system uses a paging technique in which the least

frequently used "page" is written out of core when a page not in core is
called for. A page fault occurs when the desired page is not core

resident. A data structure may occupy more than one page; page

* switching occurs when access to the same data structure crosses a page

boundary. Tuning of the data base system consisted of the following

changes.

1. Previously the initial reference to a page was treated as a

page fault (a page of zeroes was written onto mass storage

and then read into core). This artifically increased the

page fault rate. Now an appropriate in-core page is

initialized to zeroes.

2. Previously a page could only contain information about one

module. This led to high fragmentation and a higher page

fault rate. Now a page can contain information about more

than one module.

3. Previously the "activity status" algorithm that kept track

of the frequency of use of in-core pages made note of each

page fault or page switch. It ignored accesses to data

structures completely contained in one page. A higher page

fault rate resulted, since frequently referenced pages were

likely to have been "paged out". Now an equivalent but

computationally simpler activity status algorithm keeps

track of each access to a page, substantially reducing the

page fault rate.

2-7



4. Previously 20 in-core pages of 500 words provided optimum

performance for a wide range of test points. Now 30 in-core

pages of 300 words significantly reduces the page fault rate

for the same range of test points.

5. The minimum number of in-core pages required for internal

data base pointers (as opposed to source text data struc-

tures) was reduced from 4 to 2. Previously 20% of the

in-core area was used up by data base pointers; now it is

only 5.4%. This also helps to reduce the page fault rate.

2-8

,,-- S



Ri;:;iAART FILE ENHANCEMENTS

, is designed to be especially useful for analyzing large

FOIRRA:. s.iems consisting of many compilation units. Section 2

IU-crih,(I :-I, enhancements used to reduce FAVS processing time for large

FOR!RAN svstems. This section describes changes to the FAVS restart

Lile (peraanent data base) which have produced an additional order of

magnitude reduction in the cost of consistently using FAVS during the

ceding, test and acceptance, and maintenance of software. This reduction

is achieved by:

I. Reducing the size (and storage costs) of FAVS restart files

by an order of magnitude or more.

2. Pioducing updated versions of FAVS global reports by

reanalyzing changed modules only.

In addit limitation of 100 compilation units per restart file was

c. .mp1, t t,, v r,, ,)ved.

Restart processing time using FAVS.0 was a function of the number

or source lines previously analyzed as well as the number of new or

moditited source lines to be analyzed. The size of the restart file--10

to 20 times the size of the source text--effectively limited the use of

restrt tiles to small systems. Besides, it was observed that repro-

cessing a complete system was not much more expensive than reanalyzing

only chapped modules using a restart file. As a result, FAVS.O was used

aimost .- ir.,iy in its stand-alone mode. With FAVS.4, however, the

enhancemnts in efficiency and in the restart file make it economically

feasible to use the FAVS restart mode throughout the coding, test and

~~t t.. _i,d maintenance of large FORTRAN software systems. This

makts it pqsible to constantly verify that interfaces between modules

ate corr- -inL consistent, and to produce updated system level documen-

tation is r ,uired.

3-1



* Fig. 3.1 and Fig. 3.2 indicate that FAVS processing time using a

restart file has been dramatically improved, especially for large

systems with many source lines.

Restart File Size

As indicated in Fig. 3.2, the size of the FAVS restart file was
reduced by a factor of five to fifteen times. This reduction was

accomplished by a major change in the information stored on the restart

file. Previously, the file contained detailed descriptions of source

II text, which could be reanalyzed (but not modified) without having to

read source text from an external file, and used to produce global

information and reports.

The new FAVS restart file saves the information necessary to

produce reports about more than one module and perform static analysis

on new or modified source text, but it does not save source text or a

detailed description of it. To reanalyze given source text, the text

must be read from an external file. This change is consistent with the

improved processing efficiency of FAVS.4, which makes it cheaper to

reprocess source text than to store detailed source text descriptions

for possible later use.

3-2



70)

FAVS 0110 FAVS 4

5U

30 - CPU

20

10

0 1K 2K 3K 4K

SOURCE LINES

Figure 3.1. Relative Improvement in FAVS Restart Processing

20

15

0i 10

5

0 1K 2K 3K 4K 5K 6K 7K 8K

SOURCE LINES

Figure 3.2. Relative Improvement in Restart File Size

'1 3-3



: i i _ r °. .. . . .... . . . . .r . .. . . . . ..... . . . .. .. . . ..... ..... . . .. .

4 UNIVAC ASCII FORTRAN ENHANCEMENTS

In order to enhance FAVS and DMATRAN as operational tools for

ASCII FORTRAN (UNIVAC's version of FORTRAN 77), GRC modified FAVS to

recognize and process ASCII FORTRAN and modified DMATRAN to include the

ASCII FORTRAN structured IF statements. Modifying DMATRAN provided an

automatic indentation capability for ASCII FORTRAN as well as DMATRAN

programs.

ASCII FORTRAN (FORTRAN 77) adds 12 new statements to FORTRAN V,

modifies six existing statements in FORTRAN V, and adds a character

string data type and three operators related to that data type. GRC

modified FAVS to recognize and correctly process the following new

statement types:

(a) Structured IF statements

IF (e) THEN

ELSE IF (e) THEN

ELSE

END IF

(b) Character statements

CHARACTER [*len[, ]namef ,name]...]

V - e (character assignment)

(c) I/0 statements

CLOSE (cllist)

INQUIRE (iflist)

INQUIRE (iulist)

OPEN (olist)

4-1



(d) Declaration statements

INTRINSIC fun [,fun]...

SAVE [a, [, al...]

as well as the modified statement types:

(a) DO statement

DO S [,] i = el, e2 [, el

(b) I/0 statements

BACKSPACE (alist)

ENDFILE (alist)

READ (cilist) [iolist]

REWIND (ailist)

WRITE (cilist) [iolist]

Also all syntactically correct statements containing the new character

operators .EQV., .NEQV., and // will be processed by FAVS.

The DMATRAN syntax for structured IF statements was modified to

include the ASCII ELSE IF... THEN statement (the IF...THEN, ELSE, and

ENDIF statements in DMATRAN are syntactically identical to those in

ASCII FORTRAN). The DMATRAN precompiler was modified to automatically

indent the new ELSE IF...THEN statement as well as to pass ASCII FORTRAN

structured IF statements directly to the compiler without translating

them into logically equivalent ANSI FORTRAN as is currently done.

4-2



5 USER INTERFACE ENHANCEMENTS

User interface enhancements to FAVS include simplifying FAVS

commands, improving FAVS reports, and tailoring FAVS to the DMA UNIVAC

1100/80. Although no attempt has been made to quantify the benefits of

these enhancements, it is evident that a more easily usable tool with

readily understandable output will require less programmer time to

perform the same analysis.

5.1 COMMANDS

Use of FAVS has been simplified by allowing most FAVS processing

to be specified with UNIVAC @XQT parameters ("options" in UNIVAC

terminology), and providing macro commands to generate individual

reports. The FAVS options can still be specified on the command file by

using the OPTIONS command described in Sec. 3.3 of the FAVS User's

Manual. At DMA installations, the options can also be specified in the

job control language by means of parameters following the UNIVAC @XQT

command. One or more parameters can be specified at one run. Note that

no commas are allowed between parameters. For example, if you want the

STATIC analysis (S), the DOCUMENT reports (D), and INSTRUMENTation of

the modules (I), the execute statement would be

@XQT,SDI R.FAVS

The FAVS option parameters are:

B SUMMARY

D DOCUMENT

E EXPAND

I INSTRUMENT

L LIST

R RESTART

S STATIC

T INPUT/OUTPUT

X <described below>

Z RESTRUCTURE

5-1



When these parameters are used, FAVS will not read the command

file unless X is one of the parameters. The X tells FAVS that there

will be other commands on the command file (refer to FAVS User's Manual

for a discussion of commands).

New commands REPORT and FIRSTLINE were added to FAVS, and the

LANGUAGE command was deleted.

The REPORT command selects specific reports to be produced during

a FAVS run, when it is not desired to produce all the reports normally

produced by the FAVS options. It has the same format as the OPTION

command, i.e.:

REPORT = report list

Specified report names must be separated by commas. Blanks within the

list are ignored. This command may appear within the command stream in

any location that is valid for the OPTION command. The REPORT command

cannot exceed 80 characters; continuation onto another card is not

recognized. Instead a separate REPORT command should be given, or its

parameters can be abbreviated.

The report names within the REPORT command are as follows:

REPORT MINIMUM REPORT
NAME ABBREVIATION GENERATED

COMMONS CO Commons summary

PROFILE PR Statement profile

INVOCATIONS L Entries and invocations
summary

COMMONS/ENHANCED CO/E Common matrices

BANDS/n B or B/n Invocation bands (n- number

of levels)
SPACE SP Invocation space

SYMBOLS SY Symbol report

READS R I/0 statements

CROSS CR Symbol cross reference

PICTURE PI Picture of module structure

5-2



The COMMONS and PROFILE reports are produced by the SUMMARY option; the

INVOCATION report is included in both the SUMMARY and the DOCUMENT

options. All the remaining reports, except PICTURE, are produced as

part of the DOCUMENT option. The PICTURE report can only be obtained by

using the REPORT command. It is not included in any of the options

because the PICTURE report has limited use for DMATRAN source programs.

Its primary function is to delineate the control flow of FORTRAN

programs.

If the entire set of reports produced by an option is not desired,

do not use the OPTION command; instead specify the appropriate report

names in the REPORT command. If the same report is requested in both

the OPTION and the REPORT command, the report will not be duplicated.

The FIRSTLINE command was added to FAVS in order to make FAVS

easier to use on a UNIVAC 1100/80. When either the INSTRUMENT or

RESTRUCTURE option is selected, the instrumented or restructured source

program is written on UNIT 9. The user may use the command

FIRSTLINE = (<run stream command>)

to specify a UNIVAC run stream command that will be added as the first

line of every element of the source program.

For example, when a FORTRAN source program is to be instrumented,

then compiled and executed, the user could use the command,

FIRSTLINE = (@FOR,I TPF$.+).

FAVS will insert the UNIVAC command, @FOR,I TPF$.<element name> as the

first line of each element (with the appropriate element name following

TPF$.) If the UNIVAC FTN compiler is being used, the command could be

FIRSTLINE = (@FTN,I TPF$.+).

If the source code is written in DMATRAN a "C" should be sub-

stituted for the "@", because the DMATRAN precompiler must be used to

5-3



translate the DMATRAN code into FORTRAN before compilation by the

FORTRAN compiler. 1 During the translation, the DMATRAN precompiler will

automatically change the "C" to "@" and the element will be compiled by

the compiler that is specified. The appropriate commands would be,

FIRSTLINE = (CFOR,I TPF$.+).

for the UNIVAC FOR compiler and,

FIRSTLINE = (CFTN,I TPF$.+).

for the UNIVAC FTN compiler.

Previously FAVS users were required to indicate explicitly (by the

LANGUAGE command) when the DMATRAN structured dialect was being process-

ed. Now FAVS accepts, as standard input, source written in UNIVAC

FORTRAN V, UNIVAC ASCII FORTRAN, or the DMATRAN structured dialect.

Explicit indication of the language dialect is no longer required.

5.2 MODIFIED REPORTS

Major changes were made to most FAVS reports during the FAVS

Enhancement contract. All FAVS reports containing source text lines now

display the original source text rather than harder to use reconstructed

source text. The previous common matrix reports and library dependence

matrix report proved to be hard to read (especially for large systems).

They have been replaced by tabular reports and a common matrix for each

common block rather than one matrix for all common blocks. The read

statements report has been expanded into an I/O statements report. The

monolithic cross-reference report was divided into common variable,

external, and module cross-references. Splitting the static report into

separate static and symbol reports improves the usefulness of FAVS

static analysis. Restructuring now utilizes the graph checking option

of STATIC to indicate unreachable statements (which will not be included

in the restructured program).

See DMATRAN User's Guide, General Research Corporation CR-1-673/1.

5-4



Statement Listing

Most source text editors are line-number-oriented or tag each

source line with a unique name. It is essential that FAVS source

reports contain the line numbers or names needed to edit the source

text. FAVS users previously had to compare FAVS statement listing

reports (Fig. 5.1) to source listings which did contain appropriate

editing information. This can be an awkward and time-consuming task.

Now, FAVS source statement listings (Fig. 5.2) contain appropriate

editing information.

I

I

5-5

-- -



STATEMENT LISTING SUBROUTINE EXAmPL ( iNo. LENGTH

NO. LEVEL LABEL STATEMENT TEXT. DDPATHS

I SUBROUTINE EXAMPL ( INFO. LENGTH ) ( 1)
2 C

C ILLUSTRATION OF DMATKAN SYNTAX

4 C
S IF ( 114FO .LE. 1u .AND. LENGTH .GT. t; ) THEN ( 2- 3)

6 1 I) . CALL CALLER ( INFO

0ELSE
*)LENGTH = 50

i 1) LASEF ( INFO-* 6 .N, ( 4- 6)

11 CASE ( 14 )

12 1) LENGTH LNCTi- INFO

IJ CASE ( 1/
14 1) DOwh1LE ( INku ,LT. Z ) ( 7-b)

15 2) . DOUNTIL ( LENGTH .LE. INFO

Io ) . . INVOKE ( CLtIPUTE LENGTH
I .) IF ( LEiLGft .G. )U ) THEN ( 9- 1U)

16 4) .... INVOKE ( PRINT-REbULTS

19 C . . . ENUIF
z20 2) ENOUNTIL ( 11- 12)

Z Z) INFO = INFO - I
22 1) ENDWItILE

23 CASEELSE

24, 1) OOWHILE LENGTH .GT. 0 ) 13- 14)
25 (Z) . INVOKE ( COMPUTE LENGTH )
26 ( I) ENUWHLLE
2/ ENDCASE

2b BLOCK ( PRINT-RESULTS ) (15)

29 (1) WRITE ( 6. 1 ) INFO. LENGTH

30 1) 1 .FORMT (IOX.15.20X.15)
31 ENDBLOCK
32 BLOCK ( COMPUTE LENGTH

3 1) . LENGTH = LENGTH - 10
34 ENDBLOCK

35 RETURN

b END

This report, output for each module submitted to FAVS, contains

the enhanced module listing with statement numbers, nesting levels, and

DD-path numbers (at procedure entry and at each conditional statement).

Figure 5.1. FAVS.0 Statement Listing

5-6



STATEMENT LISTING SUBROUTINE EXAtPL (INOL.ENGTH)

STKY WEST LINE SOURCE.... SOURCE TAB

1 1 SUBROUTINE EXAMP (INFO,LENGTH)
2 C EXAMPL2
3 C ILLLISTRATION OF DMATRAN SYNTAX EXMlPL3

4 C EXAMPL4
2 5 IF (IWO.LE-10 AND. LENGTH.GT.0)THEN EXAMPL5
3 1 6 CALL CALLER ( IWO EXA'PL6
4 7 ELSE EXAIPL7
5 1 8 LENGTH-4O EXAIPLB
6 9 END IF EXAMPL9
7 10 CASE OF (IWO+6) EXAMPL10
S it CASE (14) EXAM"L11
9 1 12 LENGTH'.LDISTH-INWO EXAMPL12

10 13 CASE (17) EXAMIL13
11 1 14 DO WHILE (INFO.LT.20) EXAMPL14
12 2 15 DO UNTIL (LENGTH.LE. IWO) EXAMPLI5
13 3 16 . . INVOKE (COMPUTE LENGTH) EXMIPL16
14 3 17 IF (LENGTH.GE.30) THEN EXAMPL17
15 4 18 INVOKE (PRINT-RESULTS) EXAMPLI8
16 3 19 END IF EXAMPL19
17 2 20 END UNTIL EXAML20
18 2 21 INFO-IWO+1 EXAMPL21
19 1 22 END WHILE EXAMPL22
20 23 CASE ELSE EXANPL23
21 1 24 DO MHILE (LENGTH.GT.0) EXAIPL24
22 2 25 INVOKE (COMPUTE LENGTH) EXAMPL25
23 1 26 END WHILE EXAMPL26
24 27 END CASE EXAMPL27
25 Ba BLOCK (PRINT-RESULTS) EXAMPL28
26 1 29 WRIT E (6,1)IWEO.LENGTH EXAMPL29
27 1 30 1 * FORMAT (lOX,I5,2OX,15) EXAPL30
20 31 END ULOCK EXAWL31
29 32 BLOCK (COMPUTE LENGTH) EXAMPL32
30 1 33 .JLENGTH - LENGTH -10 EXAMPL3331 34 END BLOCK EAAMPt.34

32 35 RETURN EXAP3

13 36 END E)CAMPL36
---------------- ------ --- ---------- - - ----------- ---- ---------- - - ----------------

This report contains the indented module listing with statement

numbers, source line numbers, and nesting levels.

Figure 5.2. FAVS.4 Statement Listing

5-7



Invocation Summary

The library dependence matrix (Fig. 5.3) was replaced with the

invocation summary report (Fig. 5.4), which corrects several deficencies

in the library dependence matrix and can be easily understood even when

a large number of modules are involved. The library dependence matrix

report was limited to 100 modules and it did not appear advisable to

increase this limit and retain the matrix format, since the number of

pages required to print the matrix would go up as the square of the

number of modules. The resultant complexity of the library dependence

matrix reflects the matrix format rather than the software system being

analyzed. With the new invocation summary report, the complexity

increases in direct proportion to the complexity of the software being

analyzed. The invocation summary also includes entry points within

FORTRAN modules, which were omitted in the earlier report.

A

5-8



** INVOKEE * *
* * *CCEF.4,PS*AMABEEGGGGGG1I111IIKKMNNNNPSV*
* * *OOXUEAUUT*CCSGNREEEEEOFFGNNNWCLCADEEUPE*

* * *NNALMIVTR*TTSSDRNNNNTTCSRDDIIOAVMSWWTRR*

r *TT ICPNEFO*121CEOAGLVSOAOOELTTMSEOCLPlYB*
* * *R POT WTC* GARRSCAAT S UNEAHPSWBAAAFWA*
* * *L LNY DNT* NN S BRM E PTVLN ]U NBG CT*

INVOKER****

*CONTRL ** X*XX XX X X X XX *
*CONT ** X * *

EXAML *
*SFULCON X X * *

KEMPTY *XK*
MAIN *X ***

* OVEWD *X ***
*PUTFTN * X* *X X .X*

*STRUCT *X X X** X XXXXX XXXX X X X X XX*

THE FOLLOWING MODULES ARE NOT INVOKED BY ANY MODLE ON THE LIBRARY

MAIN

THE FOLLOWING MODULES DO NOT INVOKE ANY MODULE ON THE LIBRARY

EXAMPL KEMPTY

The interaction of all modules on the data base library is shown

in the first matrix. If the library contains all modules in the user's
program, this report provides a concise, complete picture of the total
internal module dependencies. If the library contains a subset of the
total program, this report aids in determining what modules do not
interact with the component and might be better suited for another
component. The modules are listed in alphabetical order.

The modules in the second matrix are not resident on the library.
If the library allegedly contains all modules in the program, the

external modules should consist only of system routines. If the library
contains a component of the total program, this report shows the module
invocation interfaces to other externals.

Considering the modules on the library as a pyramid representing
the invocation hierarchy of the modules, this report also identifies the
top" and "bottom" modules in the system.

Figure 5.3. FAVS.O Library Dependence Matrix

5-9



INVOCATION SUMMARY

ENTRY LISTS OF CALIlS

F'll Si. WHICH IS IEFINED IN (3ETL K

I. CALLED BY - -N(NIO

AND CALLS .- EFRG MAIKFRG XMIT

F'IJIURI WHICH IS DEFINEDI IN Gf.TE-LK

IS CALLEL' BY ... FIAEF PUTPOT

AND CALI..S - (3E:FTFRG MAIkFRG XMIT

I'l WHICH IS UNDEFINED

IS CALLED BY •GE.ILBK NEXT PREV FU'A r PUTFIEF PUIBOT

THE FOLIOWIN(3 ENTRIES ARE NOT CALLE'
GETBLK GETLST GETURI: ISRTAB NEXT PREV FUTAT

This report shows the dependencies of the modules in the library

by listing all modules which call an entry point and all calls from that

entry point. If an entry is defined as an entry point within a module,

the name of that module is indicated. This report includes all modules
and entries on the restart file. An updated version of the report may
be obtained by reanalyzing all changed modules and using the EXPAND
option. The actual statements where invocations to a given entry point
occur can be found in the externals cross reference report.

Figure 5.4. FAVS.4 Invocation Summary

5-10



Common Summary

The common matrix report (Fig. 5.5) was replaced by the common

summary report (Fig. 5.6). The rationale for this change was similar to

that discussed above. The number of pages necessary to produce this

report reflects the matrix format rather than the complexity of the

system analyzed. The tabular format of this report allows the 100

module limit to be eliminated.

5-11



c ** * .*

0 * * MODULE * C C E F K.M M PS *
j* * *OO X U E.A O U T*

M *N N A L M.I V T R*
0* T T M C P.N E F U*
N* * *R P U T. W T C*

• L L NY. D NT*

O *CO RON ** .*

----------------------------------------------------------- ---------

I * ACCTNG * X *
2 *CARDS *X X. *
3 *CONSTN X X X. X X *
4 *FORTRN X X X X *
5 * INTERN *X X . XX *

6 * INVOKE *X . X *
7 *RECNIZ *X *
b SESE *X . *
9 *STACK * •

10 *STATE *X X . Xx *
11 * STYPE * X . X *
12 *TRACE * X x *
13 *USEOPT X X X. X X*
14 *WARNIN * X *

This report listed all modules and all common blocks encountered.
An "X" indicates the presence of that common in a module.

Figure 5.5. FAVS.U Commons Matrix

5-12



COMMON SUMMARY

COMMON MODULES WNIC4 IPfCLUDE T14E CCMMCN

AISTO MAKTAB

ALPHA IAX

ANSI CM4ATRX REFVAR

BL9(STO OEPVOK

OBGCOM 04AKTAS

DEPCOM OEPSNO OEPVOC

EPT OEPGRP OEPVOC REFVAR

FILES CMATRX DEPSNO OEPGRF OEPYO( XREFER

GL O8AL DEPONO

HALPNA )REFER

HCHARS OEPGRP XREFER

MOIGIT CMATRK

ICMlMOS STEP15

KOELMS OEPVOI(

IACHNE OEPVOK

Hoe OEPVOC REFVAR

MMRY15 STEPt5

MTHSTO OEPGRP OEPVOC

MTHSTi OEPVOK XREFEq

This report lists all modules and all common blocks encountered.

Figure 5.6. FAVS.4 Common Summary

5-13



Common Matrix (Enhanced)

The earlier FAVS common matrix (enhanced) (Fig. 5.7) suffered from

the same artificial complexity problems as the other matrix reports. In

addition, the use of a common number to identify the common block a

variable was defined in led to considerable confusion. A report with

more detail than the common summary, but less detail than the common

cross reference, was desired. The solution to these concerns was a

separate matrix for each common block. This matrix displays the use of

common variables within a set of related modules (which all use some

variable in the common). An example of the new common matrix report is

shown in Fig. 5.8.

5-14



LIBRARY COM11ON BLOCK AATRIX LIBRARY COMMON SYMBOL LATRIX

C* * C** *
O** MODULE* C C E F K.tl M e S * 0 * *MODULE* C C E F K.M M P S
M * U X U E.A C D T * * * *OOX O E.A C U T*
M *N N A L M.I V T R* M* N N A L M.I V T R*
0* T T C P.N E F U * '* T M C P.N E F U*

N* * *R P O T. N T C* N* * *R P u T. W T C*

• * *L L N Y. CrNT* * * *L L N Y. C N T*

N* * * N* * *
0* COMMON** * )*SYMBOL** *

.4 * ** * * ** *

I ACCTNG *0 * 2 *IECk * 0. *

2 * CARDS * X 0. * 13 * INDON * 0 0. 0 0 *
3 * CONSTN * 0 X X. X X * * INSTAK * X *
4 * FORTRN * 0 X X U * 10 * ITYPE * 0 0 U *
5 INTERN * X 0 X 0 * A4 *KABL C X U 0 *

b *INVOKE * 0 X * 4 * KENGTH *0 S X O *
7 * RECNIZ *0 * A4 *KFTN * OU U U *

8 *SES- *0 * I *0 K04FTN * 0 0 O. U U *
9 STACK * O X * 5 *KSTMT *U 0 OO *
1* STATE * X X 0 X * AIU* LABEL * U X 0 U *
11 * STYPE * 0 0 * 5 * LBK * 0 U U. L U *
12* TRACE * X. X * I *LENGTH * S U . 0 *
J* USEOPT * X O o. X X * 1u * L1NBEG * U 0 0 0 *

14 * WARNIN * * I0 * LINEND * 0 0 0 *

AIO* LIST * 0 0 0 U *
S10* LPOINT * 0 U . U *

LEGEND A9 *LSTACK * 0 X *

10 * LTYPE * X U 0 U *
13 *LUNFOR * 0 0. 0 U *

COMMONS VS. MODULES 1j * LUNOUT * 0 0 0. 0 U *

.U * MENGTH * 0 0 U U *
X = > AT LEAST ONE SYMBOL REFERENCED 12 * NALTER * o o *
Q - > NO SYMBOL EVER REFERENCED A * NAIEI * 0 U *
S 5 *FATER * 0 0 0 *
SYMBOLS VS. MODULES 13 * NINDNT * U 0 0. X 0 *

5 *NLINES *S 0 0 0 *
X - > SYMBOL SET AND USED b *NOBE *0 X *
0 - > SYMBOL NEVER SET OR USED Ab NOBLOK *0 S *
S - > SYMBOL SET ONLY A6 *NOINV * X *
U = > SYMBOL USED ONLY U NSTATE *X 0 0 *

E - > SYMBOL EQUIVALENCED (OVERLAID) ONLY
A - SYMBOL IS AN ARRAY

Two matrices are produced by this report. The first one lists all
common blocks encountered in any one of the modules in the set which was
analyzed. If at least one symbol was used, it is indicated with an "X".
If no symbol was ever referenced in the module, this is indicated by a
"0". Routines from which a common block may safely be removed are
easily found.

The second matrix lists only the symbols which are used by some
module; the number of the common block in which it is found is printed
to the left and corresponds to the number given to the common block in
the first matrix. This report is an excellent aid when changes are
being made to a software system.

Figure 5.7. FAVS.O Common Matrix (Enhanced)

5-15



LOMMON MIARICES

IL..GENDil ((7 F IF'ST USEI IN - UAI. , */. f{UIVAL.FEN E .Sf :S:SET1,U:AIJSFlt.X -.SE AND I :1)

t t MODULE * N P F F' FV. I , MONA F b P P
S* *ER LJ U.E S * A T , I
S * * T I .T R D* * *R

* * TEO. A* * * * WT S*
* * * I* * * k

COMMON S YMBOt- * .M..'ION **
.. ... ... .... .... . .. .. .

:-.[.1210 * F L.CXXX * I J 1.) J U L U . * i-: * ! *)HI 7  
.* I:. X Ii - *

* FNLJXX<X * LJ U LJ U L.1 LU U ,: * SCUNT *. ,
SF RGXXX * U U .) U i. AI I.v ! ':MD r

* FSZXXX * L, .: W.NF{ * 0 S X
. ICIHXXX * S S S.,S * * ISL. AIL * L II

IXXXXX *X X X X "<X * ... (,i X X X.

* L.NGXXX * IJ U J IJ U. I * * :I-r, r. S X
MAXXXX * . ' * Y"' Y X"*

The common matrices report lists symbols which are used by at
least one of the modules on the restart file. The symbol usage is
explained in the legend at the top of the report; a blank space indi-

cates that the symbol is not used in any way in that particular module.
The symbols within each common are listed alphabetically in this report.

Only modules which use at least one variable of a common block will
occur in the matrix for that common. This report includes all commons

and modules on the restart file. An updated version of this report may
be produced by reanalyzing all changed modules and using the EXPAND
option. When all modules in a software system have been entered onto a
RESTART file, this report can be used to check for global set/use

inconsistencies. A row of one or more U's indicates that a common

variable is used but not set. A row of one or more S's indicates a

common variable which is set but not used. A common variable which is
not included in the matrix is never referenced in an executable state-

ment. The statement number where common variables are referenced can be

found in the common variable cross reference report.

Figure 5.8. FAVS.4 Common Matrices

5-16.............................................



Static Report

The use of static analysis as a consistency checking tool was

emphasized by splitting the former static analysis report (Fig. 5.9)

into a static analysis report (Fig. 5.10) which contains all consistency

diagnostics after an appropriate source line, and a separate symbols

report (Fig. 5.11) for symbol table information. The new static

analysis report contains actual source text lines as read in, summarizes

unknown externals at the end, and provides a complete cross-reference

for variables which may have set/use inconsistencies. The symbol report

is now alphabetically ordered. It omits the first statement, last

statement, and total uses information, which is better described in the

module cross-reference report (Fig. 5.14). In addition, an abbreviated

form of the static analysis report is available (Fig. 5.12) which lists

only the source lines related to inconsistencies.

-- 1



STATIC ANALYSIS SUBROUTINE CIRCLE ( AREA

SEQ NEST SOURCE UNKNOWN EXTERNALS
--------------------------------------------------------------------------------------------------------------.

I SUBROUTINE CIRCLE ( AREA

2 CONION / VALUES / DIAMTR
3 INTEGER AREA

4 RADIUS - DIAMTR 2
5 AREA - PI - RADIUS 2

----.----......----------------......--------------------

MODE WARNING
LEFT HAND SIDE HAS MODE INTEGER RIGHT HAND SIDE HAS MODE REAL

6 IF ( AREA .CT. 50 ) THEN

7(1) CALL PRNT ( AREA )

CALL ERROR
- PRNT CALLED WITH I ACTUALLY HAS 2 ARGUMENTS

CALL ERROR
-PARAMETER I OF PRNT .ACTUAL PARAMETER HAS MODE INTEGER

- FORMAL PARAMETER HAS MODE REAL

8 END IF
9 RETURN
10 CALL STACK ( RADIUS, AREA

- GRAPH WARNING
- STATEMENT 10 IS UNREACHABLE OR IS IN AN INFINITE LOOP

STACK

II END
.....................................................................................

STATEMENT ANALYSIS SUMMIARY ERRORS WARNINGS

GRAPH CHECKING 0 1

CALL CHECKING 2 0

MODE CHECKING O 1

iST TOTAL LAST IN/OUT ACTUAL PHYSICAL

NAW SCOPE MODE STiT USES STMT USE USE UNITS

AREA PARAMETER INTEGER 1 6 10 BOTH

DIAMTR VALUES REAL 2 2 4 INPUT

RADIUS LOCAL REAL 4 3 10

PI LOCAL REAL 5 1 5
...................................................................

SET/USE WARNING
- VARIABLE PI MAY BE USED BEFORE BEING ASSIGNED A VALUE -
-------------------------------------------------------------------

-------------------------------------------------------------------------------------

SYMBOL ANALYSIS SUMMARY ERRORS WARNINGS

SET/USE CHECKING 0 1

The Statement Analysis Summary contained the warning and error

messages interspersed appropriately in the code. Unknown externals,

routines called which were not in the set submitted to FAVS, were listed

on the right side of the printout. A tabulation of the errors and

warnings was listed at the bottom.

The Symbol Analysis Summary showed the name, scope, and mode of

each symbol in any executable statement in the module. The actual use

of global variables was defined as INPUT, OUTPUT, or BOTH. For any

variable that was used before being assigned a value or set and not

used, a warning indicated the condition which could lead to errors.

Figure 5.9. FAVS.O Static Analysis Report

5-18



STATIC ANALYSIS SUBROUJTINE CIRCLE (AREA

SITTNEST LINE SOURCE.. ..:SOURCE TAB
I I SUBROUTINE CIRCLE (AREA

2 2 IN4TEGER AREA
3 3 DATA PI / 3.1416/

4 5 INPUT (/R/ RADIUS
5 6 RADUS -DIAMTR 2

SET/USE ERO
-VARIABLE DIMTR USED DUT NEVER SET REFER TO STATEMENT(S)-

-5

6 7 AREA PI RADIUS**2

MODE WARNING
-__LEFTHAND SIDE HAS NODE INTEGER RIGHT HAND SIDE HAS NODE REAL-

7 8 IF (AREA OT. 50 ) THEN
aI 1 9 .CALL PRINT ( A

NODE WARNING
-PARAMETER 1 OF PRINT ACTUAL PARAMETER HAS NODE INTEGER -

FORMIAL PARAMETER HAS NODE REAL-

CALL ERROR
.-.... PRINT __CALLEDUITH 1I ACTUALLY HAS 2 AROUMENTS-

9 10 END IF
10 11 OUTPUT (/R/ A
1 13 RETUR~N
12 14 CALL STACK ( RADIUS, A

GRAPHI WARNING
- STATEMENT 12 is UNRA0t4ABLE OR IS IN AN INFINITE L013P -

13 15 END*1STATIC ANALYSIS SUMMARY ERRORS WARNNGS

GRAPH CHECKING 0 1
CALL CHECKING 1 0NODE CHECKING 0 2
SET/USE CHECKING 1 0

CALL CHECKING WAS NOT PERFORMED FOR THE FOLLOWXIG KOWN EXTERNALS..
STACK

The Static Analysis Summary contains the warning and error
messages interspersed appropriately in the code. Unknown externals
(routines called which are not in the set submitted to FAVS) are listed
at the bottom of the report. A tabulation of the errors and warnings is

listed at the bottom.

Figure 5.10. FAVS.4 Static Analysis Report (with LIST option)

5-19



SfM1iiOLS SUBRUUTINE SDBASA ( MOIULE. ISTMI, IRFTRN

NAME ,SCUF'E. IYFL MODE USE OIHER INFORMATION,

,XF'AR KDELMS VAR IABLE INTEGER USED
KXFARM RPTCOM VARIABLE ] NTEGER USED
NXIF'L'S RFTCOM VARIABLE INTEGER ISED
L ISE MINS To ARRAY IN FEG:R srT/USED
MAROS MDB VARlABI INIEGER SET
MBLOl.S MDB VARIABLE INTEGER EOUIVMBRCHN MIHTYF' VARIABLE INT EGER USED

MCALL MTHTYP VARIAR r IN TEGER USED
MCIO MI H1 YF' VAR] ABL-E INTEGER USED
MCMMNS MDB VARIABLE IN IEGER SET/USED
MDUM26 LOCAL) VAR IABLE [ I EGER E-UIV
MENTR MTH YF VARIABLE i N rEGER USED
MENIRS MOB VARIABLE INIEGER SEr/USEDMENTR2 MTHTYF VARIABLE INTEGER USED

MLULS (LOCAL) VARIAB E INTEGER SET/USED
MEQUVS M[EB VAR I A iE INTEGER SET/USED
MEXEC M rHiYF VARIABLE INTEGER USED
MEX I MTHTYF* VARIABLE INTEGER USED
MGOTO MTHTYF' VARIABLE INTEGER USED
MIF MTHTYP VARIABLE INTEGER USED
MJUNCT MTHTYF' VARI ABI E INIEGER USED
MMODE MDB VARIABLE INTEGER SET/USED
MNAML MDB VARIABLE INTEGER EQUIV
MNONX MTHTYP VARIABLE INTEGER USED
MODULE PARAMETER VARIABLE INTEGER
MF'RSET MTHTYP VARIABLE INlEGER USED
MREAD MTHTYP VARIABLE INTEGER USED
MREADS MDB VARIABLE INTEGER SET/USEt'
MTYEE MOB VARIABLE [NTEGE'R SET
MURITS MhB VARIABLE INTEGER SET/USED
NONEXS (LOCAL) ARRAY INTEGER SE'/USED
NIJMEXS (LOCAL) VARIABLE INTEGER SET/USED
NUMNON (LOCAL.) VARIABLE IN' EGER SE I/USED

THE FOLLOWING LOCAL VARIABLES WERE DEFINED B1T NOIT USED...
TOKA[DP

THE FOLLOWING NONLOCIAL VAKIABL ES ARE SET...
IRE FRN MTYFF MMODF MCMMNS MNfNRS mARGS MFT1.IVS MREADS MWRITS ISTYPE ISCODE
ISINFO L.IST

This report is generated for each module analyzed during a FAVS
run. The symbols are ordered alphabetically, and symbols which are only
defined and never referenced are not included. Symbols which have the
scope (LOCAL) are known only within the module being reported on.
Symbols with the scope parameter are formal parameters for the module.
All other scope classifications indicate the name of the common block
the common variables are defined in. Each symbol is either of type
variable or array, and of mode integer, real, logical, character,
complex, or double precision. The use column provides a summary of how
the symbol is used in the module. Local symbols which were defined but
not referenced and all non-local variables (parameters and common
variables) which are set within the module are noted at the end of the
report.

Figure 5.11. FAVS.4 Symbols Report

5-20



STATIC ALALYSIS SUBROUTINE CIRCLE ( AREA

SThT NEST LINE SOURCE.... S TAB

5 6 RADIUS - DIALTR / 2

SET/USE ERROR
VARIABLE DIAMTR USED BUT NEVER SET REFER TO STATEIENT(5)-5

6 7 AREA PI 6 RADIUS**2

MODE UARNING
- LEFT HAND SIDE HAS MODE INTEGER RIGHT HAN SIDE HAS MODE REAL -
-- - - - - - ------------------- ---------------

8 9 CALL PRINT ( AREA )

MODE WARING
-FARMETER 1 OF PRINT ACTUAL PARA ETER HAS NODE INTEGER -

- CLFL RML PARANETER HAS MODE RE.-

-CAL.L ERROR
- PRINT CALLE-DI UITH I ACTUA LLY HAS 2 ARUMENTS

12 14 CALL STACK ( RADIUS. AREA )

GRAPH U4RO ING
STATEMENT 12 IS UNREACHABLE OR IS IN AN INFINITE LOOP

-- - - - - - - - ------------------------- - - - - - -- -- - - - - - ---- - - - --- - - -

STATIC ANALYSIS SUMIARY ERRORS UARNIN18

GRAPH CHECKING 0 1
CALL CKING 1 0
MODE CHECKING 0 2
SET/USE CHECKING 1 0

CALL CHCKING UAS NOT PERFOE FOR THE FOLLOWING UNNOWN EXTERNALS ...
STACK

This report is an abbreviated version of the Static Analysis
report generated when the STATIC and LIST options are both used (Fig.
5.10). Only the statements that cause errors or warnings are listed in
the Static Analysis report when the STATIC option is specified without
the LIST option.

Figure 5.12. FAVS.4 Static Analysis Report (without LIST option)

5-21

..................................................- -- -- -



Cross Reference

The single FAVS.O cross reference report (Fig. 5.13) has been

divided into a cross reference for each module (Fig. 5.14), a common

variable cross reference (Fig. 5.15), and an external cross reference

(Fig. 5.16). The earlier cross reference did not indicate whether a

symbol was an external, a common variable, or a variable local to a

particular module. Now this information is clearly shown in the three

new cross references.

5-22



iV

CROSS REFERENCE

GENERAL CROSS REFERENCE LISTING

MODULES INCLUDED --
CONTRL
CONT
EXAMPL
FULCON
KEMPTY
MAIN

MOVEWD
PUTFTN
STRUCT

SYMBOL MODULE USED/SET/DEFlNITION C * INDICATES SET, D INDICATES DEFINITION
ACTI CONTRL 172
ACT2 CONTRL 174

ASSIGN STRUCT lbO
BGSCAN CONTRL 166
CONTRL CONTRL 1

HAIN 2
CONT CONT I

FULCON 14
STRUCT 66 103 124 153 165 202 236 258 - 262 292 303 306 345

ENDER CONTRL 183
ERROR STRUCT 53 107 111 113 128 130 169 171 213 217 219 240 244
EXAMPL EXAMPL I

MOVEWD 33
FULCON FULCON 1

STRUCT 84 1W 122 137 160 199 234 255 275 298
GENASS STRUCT 341
GENGO 'TRUCT 369
GENLAB STRUCT 73 81 85 98 102 123 139 141 149 152 161 164 195

281 283 291 299 302 305 339 340 357 360 371
GENVAR STRUCT 179 208
GETSTM CONTRL 164
GOTO STRUCT 82 99 150 162 196 232 278 300 343 358
IARRYI MJVEWD 1 23D 29*
LARRY MOVEWD I 22D 29
ICONT CONT 24D 25D 25D 25D 25D 25D 25D 25D 25D 28
IEOF CONTRL 29D 165 180

KEMPTY 5D
IERROR STRUCT 92* 93 94* 95 110 120* 121 127 15b* 159 168 190* 191

243 253* 254. 265 296* 297 309

This report provided a symbol cross reference listing for all
modules on the library. The symbol types where variables, file names,
block names, and subprogram names. Adjacent to the statement number of

the symbols appearance was a flag "*", (or D) which indicated setting or
definition.

Figure 5.13. FAVS.O Cross Reference Report

5-23



'ROSs REFERENCL iMBR0U8INE SDBASA ( MODULE, ISTMT, IRFTRN

NAM E SCOPE MODULI UYJ-i/S /EUIVAEIN'E ( * INDICATES SET

ALIE' X E XTL RNAL SDEBASA , 84 250
CALLED (LOCAL) SDBASA 74* :74 275*
ERROR EXTERNAL SIIBASA 15 1

I (LOCAL) SDASA 4P* 49 t0 5.* 51 75* 76 77 78* 78 120* 121
14, 14e 161* 1.62 171* 1/2 172 173* 173 :75 177 191*
"!27 228 321* 343 343 344* 344 346 353* 354 354 355*

IAGT ANSI SDASA 14?
I BAFAR EXTERNAL. Sr'BASA "I 1, 1."0 :' 10
ICGT ANSI 'IOASA !4)

ICOMAS (LOCAL) Sl:IqASA 119* 123* 123 12/ .
I UM (LOCAL.) SDBASA 37 ',4 I.. 169
lIX (LOCAL) SDBASA 3-*33 331 31 34* 34 36 41 41 43 49 56

76 80* 80 82* 82 84j END ANSI SDBASA A0
LENT ANSI SDASA 246 316
IEXECS (LOCAL) SPIBASA 307A 308* 309* 310* 311* 312* 31.3* 314* 315* 316* 317* 318*

327* 328* 329* 330* 331 * 332* 333* 334* 335* 336* 337* 354
IFl ANSI SIBASA 113 30U
IF2 ANSI SIBASA 128
I F3 ANSI SII.ASA I3.
IGT ANSI SDIBASA 136 311
lbTTOK EXiERNAL SVIBASA 137
IMI*B (LOCAL.) SDBASA IO1-
IFPA (LOCAL) SIIBASA 115 * 116, 11/ 1.2 170* 172 175 180* 182 182 184
IREADIC FTNEXT SriDASA 235
IRET ANSI SIIBASA 188 315
IRETRN PARAMETE SDBASA 25* 269*
ISCLAS EXTERNAL SIBASA 138
ISCOrIE SEB Sr.'PASA 29* 67* 89* 97* 112* 114* 118* 140* 156* 159* 167* 176*
I SIB (LOCAL) ,IBASA 161
ISEXEC (LOCAL.) S[IBASA 111, 358* 360*
ISINFO SIB ST'BASA 31* 129* 132* 139* 169* 199* 204* 210* 212 215 221* 249*
SSLABL SLB sriASA 16E
ISLONG SDB SIIDASA 33 36 3/7 41 59 70 73 115 116 121 139 142

192 206* 206 21.0 224 227
ISNONX (LOCAL) STPBASA 88 347* 349*
ISPTR STB SOBASA 117* 145* 1.77* 184* 185 216* 234 240
ISIMI PARAMETE SPBASA 65 84 103 250
ISTOP ANSI SOBASA 188 190 31.8
IS1 YfE SOIB SDFIASA 27 27 27 42* 59 64 74* 90 93 96 99 100*

1.66 188 188 190 198 203 208 208 208 208 208 209
252 255 255 255 343 354

ITEM (LOCAL.) SDEBASA 137* 1.38
IVMOI E EXI ERNAL SDBASA 54
IWRTEC FTNEXT SPBASA 241
IXABNL FINEXI STIBASA 302
IXASS ANSI SOBASA 252 311

This report provides a symbol cross reference for each module

analyzed during a FAVS run. All local symbols, external symbols, and
common symbols referenced in the module are included. Symbol names in

the first column are ordered alphabetically. The scope column indicates
symbols known only within this module (LOCAL), external symbols, and
symbols which are defined in common blocks included in the module (all
others). Statements (FAVS statement numbers) which use a symbol are
followed by a blank, statements which set a symbol are followed by a
'*', and equivalence statements containing the symbol are followed by an
'E'.

Figure 5.14. FAVS.4 Cross Reference (Individual Module)

5-24



CROSS REFERENCE

NAME SCOPE MODULE USE1/SEf/E[ IJlVAIEN(kII ( * 181' UVAT[ 3F I

AIDbG DBGCOM ISRTA B 82
CORE GETI:IL K 26E

ISR I AB 25E
NEXT 18E
FREU I BE
PUIAT 1,8
FUI BEF IBE
PUTBOT 1. BE

FLCXXX AISTO GETBL.K 146 190 231 266
AISTO ISRTAD 67
AISTO NEXI 39
AISTO PREV 39
AISTO FUTAT 33
AISTO F'UT}TEF 43
AISTO PUTEfOT 43

FNUXXX AISTO GEI BLA 142 187 227 261
AISTO ISRTAB 62
AISTO NEXT 36
AISTO FREV 36
AISTO F.UT AT 30
AISTO FUTBEF 40
AISTO PUI'iOT 40

FRGDIR FOOLCM GETBLK 149* 19!3* 210* 268,*

FOOLCM ISRIAB 79*
FOOLCM NEXT 43*
POOLCM FREV '13*
POOLCM FUTAT 38*

POOCM P'JTI3EF 7()*
POOLCM FUTBOr .0*

FRGXXX AISTO GETBLtI 148 192 210 268

AISTO ISR rAE 79
AISTO NEXT 43
AISTO PREy 43
AISTO PUTAT 38
AISTO FUTBEF
AISTO FUTROT 50

FSZXXX AISTO GETBLI 140 141 1.35 186 2 ., 21"' '210 ' 1 1 9
AISTO ISRIAB 66

ICHXXX AISTO GETBH. 5.6 81.* 118* 168* 23,*
AISTO PUIAT 35*
AISTO FUI IBEF 47*
AISTO FLITIOLI T17*

IXXXXX AISTO GF rBlK 147* 147 149 191* 191 I1/3 2,39* :'19 240 267* 26/ P601

AISTO ISRIAB 78* 78 /9
AISTO NEXT 42* 42 43
AISTO PREV 42* 42 43
AISTO PUIAr 37* 37 :18

This multi-module report shows where variables in common blocks
are used, set or equivalenced. The report is alphabetically ordered by
the name of the common variable. The common block which contains the
variable is indicated in the scope column. Modules which reference the
common variable are alphabetically ordered in the module column.
Statements (FAVS statement numbers) within each module are shown next.
A blank following the statement number indicates the variable is used
there, a '*' indicates the variable is set, and an 'E' indicates the
variable is equivalenced. This report is produced for all modules and
all commons on the restart file. An updated version may be obtained by
reanalyzing all changed modules and using the EXPAND option. A summary
of the information in this report is provided in the common matrices
report.

Figure 5.15. FAVS.4 Cross Reference (Common Variables)

5-25



CROSS REFERENCE

NAME SCOPE MODULE USED/SET/EQUIVALENCEDI ( * INDICATES SET

EROR EXTERNAL ISRTAB 87
FREI.NK EXTERNAL FUTIEF 31

EXTERNAL. PUTBOT 29 31

GETFRG EXTERNAL. GETBLIK 262
EXTERNAL ISRTAB 63
EXTERNAL NEXT 37
EXTERNAL. PREV 37
EXTERNAL. PUTAT 31

EXTERNAL. PLTBEF 41
EXTERNAL. PUrBOT 41

IGTWRD EXTERNAL NEXT 31 33
EXTERNAL. PREV 31 33
EXTERNAl... PUTBEF 32
EXTERNAL PUTBOT 35

ITSFRG EXTERNAL ISRTAB 60

EXTERNAL. NEXT 35
EXTERNAL FREV 35
EXTERNAL. FUiAT 29
EXTERNAL FUTBEF 39
EXTERNAL. PUTBOT 39

LGTML.T EXTERNAL ISRTAB 52 53
HAKFRG EXTERNAL. GETF. .K 224
MINO EXTERNAL I.SRTAB 66

PUT'WRD EXTERNAL. PUTIBEF 33 35 37
EXTERNAL FUTBOT 32 36 38

XMIT EXTERNAL. GETBLK 45 55 234 237

EXTERNAL NEXT 40 46
EXTERNAL. PREV 40 46
EXTERNAL PJTAT 34
EXTERNAL. PUTBEF 44
EXTERNAL PUTBOT 44

This multi-module report shows the FAVS statement number where

each external is referenced. The report is alphabetically ordered by
the name of the external. Modules which reference the external are

alphabetically ordered in the module column. Statements (FAVS statement
numbers) within each module are shown in the next column. This report

is produced for all modules on the restart file. An updated version may
be obtained by reanalyzing all changed modules and using the EXPAND

option. A summary of information contained in this report is provided
by the Invocation Summary Report. The text of each invocation can be

found by referring the FAVS statement listing or Invocation Report for
each module. Note that these reports are not generated from the

restart file but rather from source analyzed during a FAVS run.

Figure 5.16. FAVS.4 Cross Reference (Externals)

5-26



- I

Restructure

The statement listing produced during restructuring has been

enhanced to indicate any structurally unreachable statements. These

statements will not be included in the restructured source. An example

of this report is shown in Fig. 5.17.

5-27



STATIC ANIALYSIS SUBROUTINE DSORT (N. ARRY

*ISThTNEST__LINE SOURCE... .. 1tCm TAB

1 1 SUBROUTINE BSORT (N. ARRAY
2 2 DIMENSION ARRAY (100
3 3 D I112. N
4 1 4 . IF (ARRAY(I-I) LE. ARAY(I) ) 0O TO I
6 1 5 .SMALL= ARRAY(l)
7 1 6 .ARRAY(I) =ARRAY(I-1)
a 1 7 J I - 2
9 1 a 2 . IF J .LT. I )GO TO 4

11 1 9 . IF (SMALL .LT. ARRAY(J) ) G TO 3
13 1 10 4 . RY(J+) = SMAL
14 1 11 . 0 OTOlI
15 1 12 3 ARAY(J+1) = ARRAY(J)
16 1 13 . J- -1
17 1 14 GOT 0T2
1s 15 1 CONTINUE

,419 16 RETURN
20 17 END

STATIC ANALYSIS SUMM~ARY ERORS UAR4INGS

.JGRAPH CHECKING 0 0

This report is a source listing of the original FORTRAN module.
It is enhanced by indentation and statement and nesting Level numbers.

Figure 5.17. Restructure Report

5-28



New Reports

Two new reports were added to FAVS. The picture report (Fig.

5.18) can be used to pictorally display the branching structure of large

FORTRAN programs. It essentially combines a source listing and label

cross reference into a single, easier to use report.

The second new report is the interface changes report. An

INTERFACE CHANGES report is generated for each FAVS run. It lists each
module name and indicates changes in interface properties such as
parameters added or deleted, common blocks added or deleted, and

external references added or deleted. It also lists calls to undefined

entries and to entries or commons which are no longer used. Fig. 5.19

is an example of an INTERFACE CHANGES report. New modules are indicated

by the words "new module" in the fourth column.

5-29



PICTURE SUBROUTINE SORT(A.1 .JJ)

L0440" JUMPS STATEMENT TEXT S-D'.EIM. 9-". SELF LO IS58a7) SOMN Alp, ILM)

SUBOUTINE SORT(AI,1.JJ) P
DIMqENSION IU1)I(6
I NTIEOER1 A.T.TT

M- I
4. I it1

K SIF(I E.0 J) 00 TO 70

BE.
E' 10K- I .2Ei 

!  
.. IJ - (J - D)/2 .a

T - A(IJ)
.IF(A(1) LE. T) GOTO 20 .En

A( Iil) A(1)V

A(I ) T., TI A(IJ) .
[-".. 20 1 J B

IF(A J) .E.T) 0O TO 40

'i ,, A( )-l) - A(J) ,.

.. T (IJ) '

F A4.. ) L. T) O TO 40 -,EN

jE.B

Atl) A (Z)
,. T (J

GO TO 40

E:: 30 A(L) AW ....)

K. ,M-l- ....

A( IK) TT...
E.. 40 L -=L- I

IF(A(L) GT. T) 0 TO 4N. ft

mO IFJI.O1

t TT A (L) .[

E..
"50 1"F(*( K) I.LT. T ) 00 TO 50 .E

• E.
.?. . IF ( K L E . L ) ( TO 0 .IEN

.. IL(M)
. 100 (1.) - L Il

.. ; TO 11 GO TO100 i
.. 1' #...

60 IL(M) -K,.
IU(M) J
J =L
M M. I

, 70 - 1
T. IF TUEO. o) RETURN ob gP

,, I - IL(M)
.. IU(M)

.. OIF( ..I E. 11) 00 TO 5O W E

.B.E.

Pm it is n i e) a0y of th o

PITR eothslmtduefrDARNsuc prgrms Th rmr

- I -1

.E 10 (K+I) .- AK ) BETovoI

fucto reoti o eiet.hecnrlfowo.OTA

. K - K - I

proga .LT. TAd)) low TO s o r f e t
.9.

A(K~t) -T

END E

The PICTURE report can only b . obtained by using the REPORT-
PICTURE command; it is not included in any of the options because the

PICTURE report has limited use for DMATRAN source programs. The primary

function of hls report is to delineate the control flow of FORTRAN
programs. The downward flows are shown on the right of the report. The
upward flows are shown on the left. The B stands for the start of a
path and the E stands for the end of a path. This report is especially
helpful in breaking down large FORTRAN programs into smaller parts that

are more manageable for FAVS to restructure. Since the PICTURE report
shows the beginning and ending of paths, it helps the user determiner

which are logically cohesive sections of code. These sections of code

can be bounded by the DMATRAN BLOCK - END BLOCK constructs in order to

simplify restructuring and make the programs easier to use.

Figure 5.18. FAVS.4 Picture of Module Structure

5-30



'C13

Z ZO

cc X; z7 Z

-4

C;C

5-31



6 FAVS ERROR CORRECTION

Two types of errors were corrected during the FAVS software

updates: Errors introduced in earlier updates, and residual errors

" I present in FAVS after its initial installation at the DMA sites. This

section discusses the residual errors.

6.1 FORTRAN V PROCS

UNIVAC FORTRAN V allows identical sections of source text to be

inserted with the FORTRAN V INCLUDE statement. This statement refers to

* Ithe name of a text section (PROC) of one or more lines, named and saved

* using the UNIVAC PDP processor. A PROC is preceded by a line which

contains the name of the PROC beginning in the FORTRAN label field, one

or more blanks or asterisks, and then the keyword "PROC" beginning after

column 6. The original version of FAVS incorrectly looked for the

keyword "PROC" followed by the name of the PROC. FAVS was corrected to

look for the correct syntax.

6.2 FORTRAN V COMPILER STATEMENT

UNIVAC FORTRAN V allows compiler directives to be specified with a

FORTRAN V compiler statement, which must precede the compilation unit

to which it pertains. The original FAVS discarded all comments, blank

lines, and compiler statements in front of a compilation unit. As a

result, routines with UNIVAC FORTRAN V dependencies would not compile

after being instrumented or restructured by FAVS. This was corrected by

retaining all comments, blank lines, and compiler statements in front of

FORTRAN V compilation units.

6.3 FORTRAN V INTERNAL SUBROUTINES

UNIVAC FORTRAN V allows subroutines and functions to be defined

within one compilation unit. This is done by inserting each subroutine

or function (minus an "END" statement) immediately in front of the "END"

statement for the compilation unit. Such internal subroutines may be

referenced only within the same compilation unit. Each internal sub-

6-I



routine has its own scope for labels; that is, the same label may be

used in the main body of the compilation unit and one or more internal

subroutines, and a label in an internal subroutine cannot be referenced

from the main body of the compilation unit. This feature of the inter-

nal subroutines was not recognized during the initial FAVS installation.

Instrumentation of compilation units with internal subroutines resulted

in references to undefined labels when the instrumented code was

compa t. This was corrected by creating an internal subroutine at the

end of each instrumented compilation unit rather than referencing a

label defined there. Similarly, when internal subroutines referenced

duplicate labels, the restructured source would be incorrect. FAVS

label processing has been corrected to allow duplicate labels within

internal subroutines.

6.4 "EOF" VARIABLE

An early version of FORTRAN (RUN) on the CDC 6400 included "EOF"

as a keyword in certain statement types. Recognition of this statement

type was removed from FAVS, thus allowing the unrestricted use of "EOF"

as a variable name in UNIVAC FORTRAN V.

6.5 ASSIGN -GO-TO STATEMENTS

UNIVAC FORTRAN V allows ASSIGN -GO-TO statements with an empty

list of possible branch label destinations. This was identified as an

error by FAVS and caused an incomplete graph to be used during instru-

mentation, restructuring, and static analysis. FAVS was modified to

internally construct and use the complete list of possible branch label

destinations for each ASSIGN -GO-TO statement.

6.6 LONG DATA STATEMENTS

Previously very large data statements caused an abnormal termi-

nation during FAVS processing. FAVS has been corrected to check for

statements with more than 19 continuation lines, or executable state-

ments with more than 250 symbols, keywords, operators, and delimiters.

6-2



These are treated as fatal errors which terminate FAVS processing after

all source text has been scanned. An informative diagnostic identifies

each statement which is too long.

6-
Ii

6-3



APPENDIX A

UPDATES TO THE DMATRAN USER'S GUIDE

Appendix A consists entirely of updated pages for the January 1979

edition of the DMATRAN User's Guide, available as RADC-TR-78-268, Vol.

I. Replacement by the modified pages in this appendix will update the

DMATRAN User's Guide to indicate changes made during the FAVS Enhance-

ment effort.

I

A-I



4 DMATRAN CONSTRAINTS

4. 1 SYNTAX

* A maximum of 20 card images per statement.

* Statement labels between 10000 and 19999 should not be used

because the DMATRAN preprocessor adds statement labels,

beginning with label 19999 counting backwards, to the

FORTRAN source code (Fig. 3.3).

* Don't transfer to labeled DMATRAN statements with FORTRAN GO

TO's.

0 Comments may not be interspersed within DMATRAN statements.

* All two-word DMATRAN directives may be written as two

separate words or merged into one; i.e., DO UNTIL or

DOUNTIL.

4.2 DO UNTIL

Remember, when the DO UNTIL...ENDUNTIL construct is used for

iteration, the statements contained within the construct will be

executed once before the logical expression is evaluated.

4.3 CASE

The value of <integer-expression> in CASE statements must be

positive and must be less than 100.

4.4 BLOCK CONSTRUCT

* Each BLOCK...END BLOCK construct should occur after all

INVOKE statements which refer to the block name, but may be

before or after the RETURN statement.

0 Blocks can only be entered through INVOKE statements.

Sequential control transfers around BLOCK... END BLOCK

constructs. Do not use a GO TO enter the middle of a

BLOCK..END BLOCK construct from outside the block.

A-2

I . .. . __... . . . ... ., .... ... - .



The maximum number of INVOKEs and BLOCKs depends on the

lengths of the BLOCK names and number of invocations, see

Sec. 2.5.

4-

A-3



RADC HONEYWELL 61bu/'MUL'ricS

SAMPLE DMATRAN' JOB STREAM*2 (USING THE GCOS ENCAPSULATOR)

In order to use the DMATRAN precompiler, using source code written

in DMATRAN generated by a programmer or by FAVS restructurer, the job

stream shown in the2 following example can be used.

1. $ snumb (number)

2. $ ident
3. $ program rlhs

4. $ limits (GP time limit),32k,,(print line limit)

5. $ prmfl h*,r,r,>udd>320lc0320>Urban>dmatran>hstar

6. $ select >udd>-120lc0320>Urban>dmatran>filedefs -ascii

7. $ prmfl Ol,r,s,>udd(BCD dmatran source file)

8. $ prmfl 03,w~s,>udd>(BCD Translated FORTRAN source file)

9. $ endjob

A-4



DMA UNIVAC 1100/80

SAMPLE DMATRAN JOB STREAM

The job stream in the following example can be used to execute the

DMATRAN precompiler.

@ASG,A YOURSOURCE. .YOUR DMATRAN SOURCE

@USE Y.,YOURSOURCE.

@ASG,A DBM*FAVS-DMA. .ASG DMATRAN PRECOMPILER

@USE DMA., DBM*FAVS-DMA.

@XQT DMA. TRAN .EXECUTE DMATRAN PRECOMPILER

@ADD Y. ELEMENTS .ADD DMATRAN SOURCE ELEMENTS HERE

The UNIVAC 1100/80 installation of the DMATRAN precompiler

supports an additional command (see Sec. 5.1) to assist in compiling

translated DMATRAN. This command contains CFOR or CFTN in columns I

thru 4, followed by any desired information in columns 5 thru 80. The

DMATRAN precompiler changes the C in column I of all CFOR and CFTN

commands to an @ character as the command is written to the FORTRAN

output file. When the DMATRAN precompiler automatically adds the

FORTRAN output file to the runstream, the translated CFOR or CFTN

statements request either the FORTRAN V or the ASCII FORTRAN compiler.

Note that to compile a DMATRAN source element, the first line in the

element should be a CFOR or CFTN command. Indented listings without

FORTRAN V or ASCII FORTRAN compilations may be obtained by omitting CFOR

and CFTN commands.

A-5



MISSION
* Of

Rom Air Developmint Center
RA7DC ptans and ecu-te,6 'te.6e0kch, devetopment, te&-t and

Yhsetected acquiJ6ition p'tog%am,6 in sqppo,%t o6 Command, Contut.
Comi~ ncationm and Inte~tigence IC37) actiti~e,. TechnZ cat
and eng>Znee~ing 6uppottZ witin a~'eas oA technicat compence~

Z6p'ouided to ESV P~.ogkam O6jice (POs) and othe't ESV
etementa. The px..ncipat technZea mnz~ion aAezz6 akte

conmuvationz, etctomagnetic guidance and contAOL, .6W4-
vei.Uance o6 ctound and ae'to.hpace object6, intdLigence data
cottection and handLing, in~o~u'ation &6yztem technotogy,
ionosphe~ic p'topagatZ on, 6otid ztate. .6cience&6, rnicto.ai'e
phyzica and etect~onic tetiabi.tity, maintainabitqt and
comnpatibitity.


